Abstract
Realizing the importance of widely used technique of plating for flexural retrofitting of reinforced concrete (RC) beams and its drawbacks due to premature failure(s), present work concentrates in developing a finite element tool model capable of successfully capturing multiple premature failure modes and their corresponding behaviors. The model is simple but focused; the capability and accuracy of the results have been validated through test literature, particularly focusing on the load capacities of beams at progressive stages of failure modes; which is from crack initiation through to complete failure, such as the load of crack initiation, first crack and complete failure. Acceptable accuracy is shown in terms of crack type(s), crack patterns, sequence, location and direction of propagation through the innovative use of cohesive zone model (CZM). The model clearly explains that debonding and peeling, although originating from a same location for most cases, are extensions of different types of cracks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.