Abstract

Stream processing applications running on Heterogeneous Multi-Processor Systems on Chips (HMPSoCs) require efficient resource allocation and management, both at compile-time and at runtime. To cope with modern adaptive applications whose behavior can not be exhaustively predicted at compile-time, runtime managers must be able to take resource allocation decisions on-the-fly, with a minimum overhead on application performance. Resource allocation algorithms often rely on an internal modeling of an application. Directed Acyclic Graph (DAGs) are the most commonly used models for capturing control and data dependencies between tasks. DAGs are notably often used as an intermediate representation for deploying applications modeled with a dataflow Model of Computation (MoC) on HMPSoCs. Building such intermediate representation at runtime for massively parallel applications is costly both in terms of computation and memory overhead. In this paper, an intermediate representation of DAGs for resource allocation is presented. This new representation shows improved performance for run-time analysis of dataflow graphs with less overhead in both computation time and memory footprint. The performances of the proposed representation are evaluated on a set of computer vision and machine learning applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.