Abstract
The quantum critical behavior and the Griffiths-McCoy singularities of random quantum Ising ferromagnets are studied by applying a numerical implementation of the Ma-Dasgupta-Hu renormalization group scheme. We check the procedure for the analytically tractable one-dimensional case and apply our code to the quasi-one-dimensional double chain. For the latter we obtain identical critical exponents as for the simple chain implying the same universality class. Then we apply the method to the two-dimensional case for which we get estimates for the exponents that are compatible with a recent study in the same spirit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.