Abstract

The construction of numerical solutions of Einstein's General Relativity equations is formulated as an initial-value problem. The space-plus-time (3 + 1) decomposition of the spacetime metric tensor is used to discuss the structure of the field equations. The resulting evolution system is shown to depend in a crucial way on the coordinate gauge. The mandatory use of singularity avoiding coordinate conditions (like maximal slicing or similar gauges) is explained. A brief historical review of Numerical Relativity is included, showing the enormous effort in constructing codes based in these gauges, which lead to non-hyperbolic evolution systems, using "ad hoc" numerical techniques. A new family of first order hyperbolic evolution systems for the vacuum Einstein field equations in the harmonic slicing gauge is presented. This family depends on a symmetric 3 × 3 array of parameters which can be used to scale the dynamical variables in future numerical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.