Abstract
We introduce a numerical method for solving Grad's moment equations or regularized moment equations for an arbitrary order of moments. In our algorithm, we do not explicitly need the moment equations. Instead, we directly start from the Boltzmann equation and perform Grad's moment method [H. Grad, Commun. Pure Appl. Math., 2 (1949), pp. 331–407] and the regularization technique [H. Struchtrup and M. Torrilhon, Phys. Fluids, 15 (2003), pp. 2668–2680] numerically. We define a conservative projection operator and propose a fast implementation, which makes it convenient to add up two distributions and provides more efficient flux calculations compared with the classic method using explicit expressions of flux functions. For the collision term, the BGK model is adopted so that the production step can be done trivially based on the Hermite expansion. Extensive numerical examples for one- and two-dimensional problems are presented. Convergence in moments can be validated by the numerical results for different numbers of moments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.