Abstract

A high order numerical method for the solution of model kinetic equations is proposed. The new method employs discontinuous Galerkin (DG) discretizations in the spatial and velocity variables and Runge–Kutta discretizations in the temporal variable. The method is implemented for the one-dimensional Bhatnagar–Gross–Krook equation. Convergence of the numerical solution and accuracy of the evaluation of macroparameters are studied for different orders of velocity discretization. Synthetic model problems are proposed and implemented to test accuracy of discretizations in the free molecular regime. The method is applied to the solution of the normal shock wave problem and the one-dimensional heat transfer problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.