Abstract

A numerical analysis method for wind-induced response of structures is presented which is based on the pseudo-excitation method to significantly reduce the computational complexity while preserving accuracy. Original pseudo-excitation method was developed suitable for adoption by combining an effective computational fluid dynamic method which can be used to replace wind tunnel tests when finding important aerodynamic parameters. Two problems investigated are gust responses of a composite wing and buffeting vibration responses of the Tsing Ma Bridge. Atmospheric turbulence effects are modeled by either k–ω shear stress transport or detached eddy simulation. The power spectral responses and variances of the wing are computed by employing the Dryden atmospheric turbulence spectrum and the computed values of the local stress standard deviation of the Tsing Ma Bridge are compared with experimental values. The simulation results demonstrate that the proposed method can provide highly efficient numerical analysis of two kinds of wind-induced responses of structures and hence has significant benefits for wind-induced vibration engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call