Abstract

Turbulent airflows around structures are important in many engineering applications. Such flows can have a significant impact on the thermal performance of the reactor vessel auxilliary cooling system (RVACs) of advanced liquid-metal reactor designs. The adequacy of the high-Reynolds-number form of the k-e model in analyzing turbulent airflow around structures like the RVACS stacks is evaluated. An experiment of simulated atmospheric turbulent flow around a cube is analyzed with the computer code COMMIX, and numerical predictions for pressure and velocity distributions are compared with experimental measurements. Considering the complexity of the problem and the approximation involved in the k-e model, the overall agreement between numerical predictions and measurements of pressure coefficients and velocities is good. The largest discrepancies between predictions and measurements are in the pressure coefficient at the sections of the top and side cube surfaces very close to the upwind edges and in the spanwise velocity distribution downstream from the cube

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.