Abstract

In this paper, the resistance acting on Multi-Purpose Amphibious Vehicle (MAV) hull navigated in regular waves condition was investigated numerically. A simplified MAV model was established for computing the resistance of air cushion effect on regular head waves. Simulations were carried out in finite element analysis ANSYS CFX 15.0 in 0.5m wave height conditions. The resistances of the MAV model with and without the air cushion effect were compared in a graph of total resistance versus MAV speed. According to the results, the maximum resistance reductions occur at forwarding speed 6kn with 0.2 l/s airflow rate injection for wave height 0.5m at 10.89%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call