Abstract

Abrasive wear can cause surface damage of bulk solids handling equipment. Reducing the abrasive wear is beneficial to lower the maintenance cost. Previous research elaborated on the bionic design methodology to reduce surface wear of bulk solids handling equipment. To facilitate the application of the bionic design methodology in bulk solids handling, this research examines the effectiveness of a bionic model using discrete element method (DEM) simulations. A reference case of an abrasive wear scenario in bulk solids handling is simulated, and the wear volume of a smooth chute surface is predicted. By applying a bionic model to the chute surface and using the same simulation model, the wear volume of a bionic surface is predicted. By comparisons, it is identified that the bionic surfaces produce less wear than the smooth surface. In addition, the sensitivities of the geometrical parameters for the wear reduction are predicted. Therefore, the abrasive wear reduction effectiveness of the bionic model is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.