Abstract

A full two-dimensional Navier–Stokes algorithm is used to investigate unsteady, incompressible viscous flow past an airfoil leading edge with surface roughness that is characteristic of ice accretion. The roughness is added to the surface through the use of a Prandtl transposition and can generate both small-scale and large-scale roughness. The focus of the study is a detailed flow analysis of the unsteady velocity fluctuations and vortex shedding induced by the surface roughness. The results of this study are compared to experimental data on roughness-induced transition for the same roughness geometry. A comparison is made between “fluctuation intensity” values from the current algorithm to experimentally determined turbulence intensity values. The effects of the roughness Reynolds number, Re k , are investigated and compared to experimental values of the critical roughness Reynolds number. The authors speculate that there may be a possible correlation between unsteady roughness-induced vortex shedding and the onset of experimentally measured transitional flow downstream of large-scale roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.