Abstract

AbstractA numerical technique is developed to determine the three‐dimensional fiber orientation in complex flows. The fiber orientation state is specified in terms of orientation tensors, which are used in several constitutive models. This method is applied to quasi‐steady state Hele‐Shaw flows in order to predict the flow‐induced fiber orientation during injection molding at zero volume fraction limit. At the inlet, a number of fibers are introduced at a specified rate into the flow and each fiber location is traced during the mold filling. Along these determined paths, the independent components of fourth order orientation tensors are solved, describing the orientation state. The numerical grid generation technique, which is suitable for complex mold shapes, is employed for the flow solution. Orientation ellipsoids are calculated from the second order tensors and are used to present the fiber orientation results. The numerical solutions are obtained for channel and converging flows. Planar, longitudinal, and transverse orientation results are generated from the orthogonal projections of the orientation ellipsoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.