Abstract

This paper describes a numerical method capable of solving the steady and unsteady viscous flow around complete aircraft configurations at high angles of attack. This method is used to simulate the external flow around the F-18 aircraft, including deflected control surfaces. The current technique employs a generalized overset zonal grid scheme to decompose the computational space around the aircraft. The grid around various components of the aircraft are created numerically using a three-dimensional hyperbolic grid generation procedure. The Reynolds-averaged Navier-Stokes equations are integrated using a time-accurate, implicit procedure. Results for the turbulent flow around the F-18 aircraft at 30 degrees angle of attack show the details of the flowfield structure, including the unsteadiness created by the vortex burst and the resulting fluctuating airloads exerted on the vertical tail. The computed results agree fairly well with flight data for surface pressure, surface flow pattern, vortex burst location, and the dominant frequency for tail load fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.