Abstract

The paper is concerned with the study of the effects of the in-cylinder and regenerator heat transfer characteristics of a single-acting opposed-piston Stirling engine, with heater and cooler both omitted, for which a simulation model has been developed. The engine thermodynamic cycle is divided into a number of time-steps, and a system of nonlinear ordinary differential equations, which describe the energy balances over the three basic control volumes (hot and cold cylinders and regenerator), is solved numerically. Empirical correlations are used to determine the instantaneous heat transfer coefficients in the regenerator (flow across a porous medium) and inside the cylinder space (gas confined in a cylindrical volume with a moving boundary). Numerical results from the model are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.