Abstract

The manufacturing of three-dimensional components by deep drawing is performed using flat sheets. The material properties of the sheets are influenced by the deep drawing process by means of microstructural effects (e.g., anisotropy, residual stresses, voids, lattice defects). The resulting effects, especially voids and lattice defects, influence the component in the form of damage accumulation and evolution. Depending on the process route and parameters, different load paths are created, which lead to different damage evolution scenarios. This paper numerically investigated the influence of process parameter (drawing ring radius) as well as process set-up (multi-step deep drawing and reverse drawing) during deep drawing and the associated load paths on damage evolution in rectangular cups made out dual phase steel DP800.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call