Abstract
A numerical method is proposed to predict the effective wake profiles of high speed underwater vehicles propelled by contra-rotating propellers (CRPs), in which the hydrodynamic effects of the CRPs are simulated by distributed body forces. First, Reynolds-averaged Navier-Stokes (RANS) simulations are conducted for identical body-force distributions in open-water and self-propulsion conditions. The effective wake profiles at the CRP disks are then obtained by subtracting the velocities induced by the body forces in the open water from those induced by the body forces in the self-propulsion condition. The effective wake profiles were then predicted for a generic underwater vehicle with an established CRP design. Next, the hydrodynamic performance of the CRPs in the effective wake was computed using an in-house vortex-lattice code. The potential-flow results agree well with those provided by the RANS simulation under the self-propulsion condition, indicating that the proposed method can predict the effective wake profiles for CRPs with reasonable accuracy. The influences of different wake components on the blade forces were investigated, determining that for CRPs, and especially for the aft propeller, the circumferential wake cannot be neglected in the design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.