Abstract

The production rate of a typical shale gas well generally has steep decline trend at the initial stage but small declines at later times. Some empirical relationships have been proposed to describe the declining production rates and thus forecast the final cumulative production of a shale gas well. However, these empirical relationships can hardly elucidate the mechanisms that cause the special shale gas production trend. In this study, a novel two-part Hooke’s model (TPHM) for the permeability and effective stress relationship is developed and incorporated into the hydro-mechanical COMSOL solver to determine the production rate of shale gas wells against time. The TPHM conceptualizes shale rock into soft part and hard part, which comply with the natural-strain-based and engineering-strain-based Hooke’s laws, respectively, and contribute differently to the decreasing permeability with increasing effective stresses. The simulation results are analyzed and compared with those for which the permeability change effect is not considered. The analysis indicates that the decrease in stress-induced permeability plays a non-negligible part in the decline of the production rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.