Abstract

In this paper, we report an efficient numerical method to predict thermal fluid flow behavior in a square cavity filled with porous medium. The conventional Navier-Stokes equations are solved indirectly, i.e by the lattice Boltzmann formulation with second order accuracy in space and time. Numerical experiments were performed with different values of medium porosity and Rayleigh number to investigate the effect of these dimensionless parameters on the thermal fluid flow behavior in the cavity. In the current study, we found that the dynamics and the structure of primary vortex are significantly affected by the Rayleigh number and the medium porosity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.