Abstract

During nuclear power plant (NPP) operation, degradation effects like ageing, corrosion, fatigue, and others may significantly impact component integrity. One of the degradation mechanisms is hydrogen absorption. High levels of hydrogen in zirconium alloys can lead to the formation of zirconium hydrides and that can influence material properties. Therefore, determination of material properties under different levels of hydrogen concentration in zirconium alloys is important. It is not always possible to conduct an experimental testing. Therefore, there is a need for alternative methods for determination of material properties. This article presents the numerical prediction of material properties of zirconium 2.5% niobium alloy with hydrides. According to the objective of the work, numerical prediction was performed using the finite element (FE) method. This was done by creating a finite element model of zirconium hydride embedded in zirconium alloy. The geometry and size of hydride were measured from a real specimen. The size of zirconium alloy surrounding the hydride was selected in such a way that hydride volume part in the model would match experimental measurements. The prognosis results were compared with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.