Abstract

An analytical method including a macroscopic cavitation model based on the homogeneous flow theory and a microscopic cavitation model based on the bubble dynamic was proposed for the prediction of the impact force caused by cavitation bubbles collapse in cavitating flows. A Large Eddy Simulation (LES) solver incorporated the macroscopic cavitation model was applied to simulate the unsteady cavitating flows. Based on the simulated flow field, the evolution of the cavitation bubbles was determined by a microscopic cavitation model from the resolution of a Rayleigh-Plesset equation including of the effects of the surface tension, the viscosity and compressibility of fluid, thermal conduction and radiation, the phase transition of water vapor at interface and chemical reactions. The cavitation flow around a hydrofoil was simulated to validate the macroscopic cavitation model. A good quantitative agreement was obtained between the prediction and the experiment. The proposed analytical method was applied to predict the impact force at cavitation bubbles collapse on a KT section in cavitating flows. It was found that the shock pressure caused by cavitation bubble collapse is very high. The impact force was predicted accurately comparing with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.