Abstract

Numerical results are presented for an oscillating viscous flow past a square cylinder with square and rounded corners and a diamond cylinder with square corners at Keulegan–Carpenter numbers up to 5. This unsteady flow problem is formulated by the two-dimensional Navier–Stokes equations in vorticity and stream-function form on body-fitted coordinates and solved by a finite-difference method. Second-order Adams-Bashforth and central-difference schemes are used to discretize the vorticity transport equation while a third-order upwinding scheme is incorporated to represent the nonlinear convective terms. Since the vorticity distribution has a mathematical singularity at a sharp corner and since the force coefficients are found in experiments to be sensitive to the corner radius of rectangular cylinders, a grid-generation technique is applied to provide an efficient mesh system for this complex flow. Local grid concentration near the sharp corners, instead of any artificial treatment of the sharp corners being introduced, is used in order to obtain high numerical resolution. The elliptic partial differential equation for stream function and vorticity in the transformed plane is solved by a multigrid iteration method. For an oscillating flow past a rectangular cylinder, vortex detachment occurs at irregular high frequency modes at KC numbers larger than 3 for a square cylinder, larger than 1 for a diamond cylinder and larger than 3 for a square cylinder with rounded corners. The calculated drag and inertia coefficients are in very good agreement with the experimental data. The calculated vortex patterns are used to explain some of the force coefficient behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call