Abstract
The paper attempts to assess the erosive potential of cavitation bubbles in unsteady flow of liquid over a prismatic hydrofoil using two-way coupling of the URANS and the Rayleigh-Plesset equations. The erosive potential of the cavitating flow is evaluated from the energy dissipated during the collapses of imploding cavitation bubbles near the solid surface of the hydrofoil. The bubbles are assumed spherical and the phase slip is neglected. Bubble fission is modelled using a simple break-up model. The interaction between bubbles is considered by superposing the pressure change due to pressure waves generated by collapsing bubbles and propagated in the computational domain over the local pressure in the liquid (external to the bubble). The rate of erosion of the solid material is not studied in this work. The flow is analysed using the in-house three-dimensional solver for unsteady turbulent flow with bubble dynamics. The results are demonstrated on the NACA 2412 hydrofoil with the incidence angle of 8 degrees and the cavitation number 1.37, which corresponds to the regime of oscillating partial cavity with periodic shedding of bubble cloud downstream of the cavity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.