Abstract

The paper presents numerical prediction of cavitation erosion on a Francis turbine runner using CFD code. The SST turbulence model is employed in the Reynolds averaged Navier–Stokes equations in this study. A mixture assumption and a finite rate mass transfer model were introduced. The computing domain is discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The finite volume method is used to solve the governing equations of the mixture model and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators(PISO) procedure. Comparison the numerical prediction results with a real runner with cavitation damage, the region of higher volume fraction by simulation with the region of runner cavitation damage is consistent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.