Abstract
As an economical alternative to solid corrosion resistant alloy (CRA) and clad pipes, mechanically lined or sleeved CRA pipes are proven to be effective in the transport of corrosive fluids in oil and gas industry. A major issue with these pipes is that pressure drop or fluctuations may cause buckling of the liner, resulting in irreparable and costly damage. This issue should be resolved in order to fully implement this type of pipes in oil and gas industry. In this study, post-buckling analysis of liner pipe encased in carbon steel outer pipe is carried out following the hydraulic expansion manufacturing process. Commercially available abaqus finite element software is employed. The proposed model is partly verified with an analytical solution and other numerical results under the condition of no residual contact pressure. Results of the parametric study reveal that increasing the residual contact pressure and decreasing the magnitude of geometric imperfection can both contribute to enhancing the buckling resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.