Abstract

Explicit computational formulas for the coefficients of the periodic normal forms for codimension 2 (codim 2) bifurcations of limit cycles in generic autonomous ODEs are derived. All cases (except the weak resonances) with no more than three Floquet multipliers on the unit circle are covered. The resulting formulas are independent of the dimension of the phase space and involve solutions of certain boundary-value problems on the interval $[0,T]$, where $T$ is the period of the critical cycle, as well as multilinear functions from the Taylor expansion of the ODE right-hand side near the cycle. The formulas allow one to distinguish between various bifurcation scenarios near codim 2 bifurcations of limit cycles. Our formulation makes it possible to use robust numerical boundary-value algorithms based on orthogonal collocation, rather than shooting techniques, which greatly expands its applicability. The implementation is described in detail with numerical examples, where numerous codim 2 bifurcations of limit cycles are analyzed for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.