Abstract
The hyperplane constrained method has been proposed in Yadani et al. (Appl Math Comp 216:779–790, 2010) computing singular value decomposition (SVD) of matrix. In the method, the SVD is replaced with solving nonlinear systems whose solutions are constrained on hyperplane, and then their solutions are computed with the help of Newton’s iterative method. In this paper, we present a new convergence theorem concerning the hyperplane constrained method in finite arithmetic. We also clarify the numerical performance of the hyperplane constrained method. In numerical experiments, we first show that the computed singular values and singular vectors are with high accuracy, even if the target matrix of SVD has small singular values, almost the same singular values, not small condition number. Though the hyperplane constrained method requires not small amount of computations, it fastens by combining other fast singular value decomposition method. We next propose a hybrid method which adopts the singular vectors computed by other fast method as the initial guess of the Newton type iteration in order to decrease the iteration number. By numerical experiments, we can see that the hybrid method runs faster than the original hyperplane constrained method with almost same accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.