Abstract

ABSTRACTThermal potential for cooling and heating can be achieved by new configuration of earth–air heat exchanger (EAHE). This paper presents a numerical investigation of thermal performance of a spiral-shaped configuration of EAHE intended for the summer cooling in hot and arid regions of Algeria. A commercial finite volume software (ANSYS FLUENT) has been used to carry out the transient three-dimensional simulations and the obtained results have been validated using the experimental and numerical data obtained from the literature. The agreement between our simulation results and those from literature is very satisfactory. A parametric analysis of the new geometry of (EAHE) has been performed to investigate the effect of pitch, depth, pipe length and of the flow velocity on the outlet air temperature and the EAHE’s mean efficiency as well as its coefficient of performance (COP). It has been shown that when the pitch space varies between 0.2 and 2 m the difference of outlet air temperature increases by 6 °C. When the air velocity increases from 2 to 5 m/s the mean efficiency decreases from 60 % to 33 % and the COP of the EAHE decreases from 2.84 to 0.46.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call