Abstract

This article reports the finite element (FE) investigation of the axial capacities of pultruded fiber-reinforced polymer (PFRP) composite channel columns. The nonlinear finite element model (FEM) was developed by using the ABAQUS package for glass fiber-reinforced polymer (GFRP) composite channel columns, which included geometric and initial geometric imperfections. The developed FEMs were verified against an experimental result available in the literature for GFRP channel columns. The validated FEMs were used to carry out the parametric study comprising 61 FE models to investigate the effect of different geometries, plate slenderness and the length of members on the axial capacities of GFRP pultruded channel columns. The results obtained from the parametric study were used to examine the accuracy of the current Italian guidelines, American pre-standard and the Direct Strength Method (DSM) proposed in the literature for GFRP channel profiles. Based on the obtained results, the suitability of the current design guidelines is assessed and, also, a new set of design equations is proposed to estimate the axial capacity of the pultruded GFRP channel columns. The new proposed set of reliable design equations witnessed a less scattered and a high degree of accuracy in determining the axial load capacity of the pultruded GFRP composite channel columns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.