Abstract
Excessive synchronization in neural activity is a hallmark of Parkinson's disease (PD). A promising technique for treating PD is coordinated reset (CR) neuromodulation in which a neural population is desynchronized by the delivery of spatially-distributed current stimuli using multiple electrodes. In this study, we perform numerical optimization to find the energy-optimal current waveform for desynchronizing neuronal network with CR stimulation, by proposing and applying a new optimization method based on the direct search algorithm. In the proposed optimization method, the stimulating current is described as a Fourier series, and each Fourier coefficient as well as the stimulation period are directly optimized by evaluating the order parameter, which quantifies the synchrony level, from network simulation. This direct optimization scheme has an advantage that arbitrary changes in the dynamical properties of the network can be taken into account in the search process. By harnessing this advantage, we demonstrate the significant influence of externally applied oscillatory inputs and non-random network topology on the efficacy of CR modulation. Our results suggest that the effectiveness of brain stimulation for desynchronization may depend on various factors modulating the dynamics of the target network. We also discuss the possible relevance of the results to the efficacy of the stimulation in PD treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.