Abstract

At present, coal mining is gradually shifting towards deep areas, and coal mines under deep mining conditions are more prone to coal and gas outburst accidents. In this research, we aim to explain the causes and mechanisms of dynamic disasters, which are caused by the combined action of static load, gas, and dynamic load on tectonic regions in complex stress field environments. Through numerical simulation using COMSOL Multiphysics software, based on the geological conditions of a mine in Jilin Province, it was found that faults lead to abnormal stress in tectonic regions. The combined action of dynamic and static loads results in excessive stress, causing the fragmentation and displacement of the coal body, leading to coal mine disasters, thus disrupting sustainability. Additionally, the coal matrix gas entering fractures raises the gas pressure and leads to the accumulation of methane near earthquake sources. Dynamic loads accelerate gas desorption in coal and increase porosity and permeability, facilitating rapid gas migration. This influx of gas into the roadways exceeds safety limits. Then, based on these findings and on-site conditions, a set of sustainable measures for coal mines has been proposed. This research offers theoretical guidance for enhancing safety, stability, and sustainability in coal mining processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call