Abstract

We report on a numerical study of viscous fluid accretion onto a black hole. The flow is axisymmetric and uses a pseudo-Newtonian potential to model relativistic effects near the event horizon. The numerical method is a variant of the ZEUS code. As a test of our numerical scheme, we are able to reproduce results from earlier, similar work by Igumenshchev and Abramowicz and Stone et al. We consider models in which mass is injected onto the grid as well as models in which an initial equilibrium torus is accreted. In each model we measure three ``eigenvalues'' of the flow: the accretion rate of mass, angular momentum, and energy. We find that the eigenvalues are sensitive to r_{in}, the location of the inner radial boundary. Only when the flow is always supersonic on the inner boundary are the eigenvalues insensitive to small changes in r_{in}. We also report on the sensitivity of the results to other numerical parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.