Abstract

AbstractGalactic microquasars have been detected at very-high-energies (VHE) (> 100 GeV) and the particle acceleration mechanisms that produce this emission are not yet well-understood. Here we investigate a hadronic emission scenario where cosmic-rays (CRs) are accelerated in magnetic reconnection events by the turbulent, advected-dominated accretion flow (ADAF) believed to be present in the hard state of black hole binaries. We present Monte Carlo simulations of CR emission plus γ-γ and inverse Compton cascades, injecting CRs with a total energy consistent with the magnetic energy of the plasma. The background gas density, magnetic, and photon fields where CRs propagate and interact are modelled with general relativistic (GR), magneto-hydrodynamical simulations together with GR radiative transfer calculations. Our approach is applied to the microquasar Cygnus X-1, where we show a model configuration consistent with the VHE upper limits provided by MAGIC collaboration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call