Abstract

The main objective of the present PhD thesis is to develop a complete methodology for the numerical modelling of UHPFRC from the material level to structural elements. It intends to contribute to advanced knowledge of mechanical UHPFRC behaviour to lead to a numerically modelling proposal that is useful for structural modelling and design that allows options for this material to be competitive in the construction market. Optimised UHPFRC material constitutive behaviour, characterised by a direct reliable defined procedure, is considered in the proposed modelling methodology to take advantage of these properties, and to lead to an efficient structural design from the mechanical and economical points of view. Is it necessary to produce SH-UHPFRC to obtain excellent properties? Is it possible to develop SS-UHPFRC that leads to lower initial costs and to maintain competitive mechanical and durability properties that result in an effective structural design? The development of low strain-hardening and SS-UHPFRC would lead to reduce its mechanical properties, but they can be optimised if they are studied and controlled. The thesis addresses some of these questions by studying tensile UHPFRC behaviour to cover a wide range of tensile constitutive behaviours from SH-UHPFRC to SS-UHPFRC. It intends to propose a reliable tensile characterisation process and a reliable finite element model capable of accurately simulating the response of UHPFRC specimens and reinforced structural elements. An extensive experimental and numerical campaign with 227 unreinforced four-point bending test (4PBT) specimens with amounts of smooth-straight (13/0.20) steel fibres of 1.53-1.66% (120-130kg/m3) in volume and with 2.00% (160kg/m3), which represents SS-UHPFRC and SH-UHPFRC tensile behaviours, was carried out to set up a direct tensile characterisation procedure involving SS-UHPFRC and SH-UHPFRC. The direct procedure's development and validity are ensured by a reliable non-linear finite element model (NLFEM). Numerical validation was carried out and is decisive for performing the direct procedure to characterise the tensile behaviour of both SS and SH-UHPFRC herein developed accurately, simply and reliably. With the experimental programme herein, a predictive application for estimating tensile UHPFRC parameters was developed. The prediction offers reliable results. The application is simple and direct, and avoids variability in the characterisation procedure due to possible misinterpretations in its application. In addition, a second experimental programme, which includes reinforced concrete flexural beams on different scales, with 36 UHPFRC reinforced short beams with 130 and 160kg/m3 of steel fibres and two full-scale long beams, was carried out and modelled with the NLFEM herein developed including major effects due to the interaction between UHPFRC and reinforcement bars. Additionally, reinforced UHPFRC tensile bars from a recent experimental campaign performed by other researchers were modelled with the NLFEM. The model considers shrinkage effects, tension stiffening behaviour and 3D effects due to the particularities of the test, which provide very accurate results compared to those obtained with the experimental tests. As a result of this PhD thesis, an accurate NLFEM was obtained to model reinforced UHPFRC structural elements. The results of the model compared to the experimental ones demonstrate not only the reliability of the developed NLFEM, but also the coherence of the developed direct procedure to characterise tensile UHPFRC behaviour in both strain-softening and strain-hardening in reinforced flexural and direct tensile structural elements. Consequently, a complete and effective methodology for numerical UHPFRC modelling from the material level to structural elements is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.