Abstract
Structural failure of existing unreinforced masonry buildings, when subjected to earthquake loading, is often caused by the out-of-plane response of masonry walls. Their out-of-plane resistance could vary considerably depending on several factors, such as boundary conditions, vertical overburden and construction technique. Amongst the latter, the cavity wall system, originally introduced in Northwest Europe in the 19th century and then spread to several countries including USA, Canada, China, Australia and New Zealand, has been shown to be particularly vulnerable towards out-of-plane actions. In this work, the use of the Applied Element Method was investigated and subsequently considered for reproducing the experimentally observed out-of-plane shake-table response of unreinforced masonry full-scale cavity wall specimens subjected to both one-way and two-way bending. Finally, given the adequate results obtained and aimed at investigating further both potential limits and actual capabilities of the adopted modelling strategy, the latter was also extended to the simulation of the dynamic out-of-plane-governed failure mode of a full-scale building specimen tested up to complete collapse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.