Abstract

This work describes the dynamics of an underwater pipeline subjected to an incident flow composed of a uniform flow and a sinusoidal component. The motion equations of the pipeline and the fluid flow around the pipeline are solved simultaneously with a numerical model that considers in-line oscillations (one degree of freedom) and a second numerical model that additionally includes cross flow (two degrees of freedom). The amplitude response and drag forces on the pipe are compared for both models considering parameters such as the difference between the excitation and natural frequencies of pipelines and the relative value between the sinusoidal and uniform components of the incident flow. Important differences in numerical predictions of both models are observed when the excitation frequency is greater than the natural frequency of the system and when the amplitude of the oscillatory component of the incident flow is greater than the amplitude of the uniform flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.