Abstract

ABSTRACT The key question regarding steep rock slopes along rock quarries is their stability because a rock slope failure can have critical results. In this study, the aim is to investigate the areas with potential risk for jointed karstic limestones in a rock quarry. First, to determine rock mass properties, scan-line surveys were performed, and the major orientations of discontinuities were analyzed using stereographic projection. Then, the physico-mechanical properties of the slope-forming rock were determined in the laboratory, and geomechanical properties of the rock mass were determined using an empirical failure criterion. Finally, the quarry slope stability was assessed in accordance with numerical modelling. According to the results obtained, the numerical modelling of steep rock slopes can be efficiently evaluated by using finite element method. Beside this, the presence of joints intersecting the main discontinuity sets, the filling materials of discontinuities resulting from weathering of limestone and surface deposits, surcharge load due to mine waste dumped on the slopes and excavation blasting during construction of quarry area play a key role when modelling the steep rock slopes by using finite element method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.