Abstract

We discuss results on the solar wind flow past the non-axisymmetric magnetospheres of planets Jupiter and Saturn obtained by integrating numerically the dissipationless MHD equations under simplifying assumptions. We model these equatorially broadened magnetospheres as paraboloids with two different radii of curvature at the subsolar point. The thickness of the magnetosheath and the width and structure of the plasma depletion layer are found to be strong functions of the orientation of the interplanetary magnetic field (IMF). The effect of the IMF on the magnetosheath is strongest (weakest) when the IMF is directed perpendicular (parallel) to the rotational equator. For any intermediate IMF orientation, a smooth rotation of the magnetosheath magnetic field towards the direction of the planet's rotational axis is superimposed on the field strength enhancement (and the density reduction) as the respective magnetopauses are approached. These effects are more pronounced at Jupiter than at Saturn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.