Abstract
Catenary mooring lines experience liftoff from and grounding on the seabed when undergoing large dynamic motions. Numerical line mooring models account for this interaction using various seabed models and it is known that the action of liftoff and grounding may lead to large dynamic tension fluctuations. These fluctuations may be spurious due to the inability of discretised mooring models to adequately account for the effect of the seabed on the mooring line. In this work, the root cause and conditions that lead to the production of the large dynamic tension fluctuations is determined. The effect of line discretisation and seabed model on the tension fluctuations is investigated using the widely used spring-mattress approach and a modified seabed reaction force model. An in-house mooring code was developed to perform these investigations. For code validation and benchmarking, and to illustrate the existence of the tension fluctuations problem due to nodal grounding in existing mooring line simulation codes, comparisons are made to a commercial software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.