Abstract

Since the invention of electronic detonators with a delay accuracy within 1 ms, short-delay blasting technology has been used in mining and tunnelling engineering to improve rock fracturing and control blast-caused vibration. However, the fragmentation characteristics of pre-stressed rock under short-delay blast loading have not been studied in detail. In this study, the interaction between the short-delay blast loading and static in-situ stress is investigated using a FEM-based modelling method and image-processing approach. Firstly, single-hole blasting tests were conducted in an underground roadway with a burial depth of 620 m. Subsequently, a single-hole blasting model was developed in LS-DYNA and validated against one of the experimental results, a two-hole delay blasting model was established to simulate rock fracture and fragmentation under different delay times and in-situ stresses. Finally, the underlying mechanism of in-situ stress affecting the optimum delay time was theoretically analyzed and an analytical solution for optimum delay was proposed. The tested results show that under a borehole length and charge weight of 1 m and 1.5 kg, respectively, the average fragment size is approximately 10.5 cm, and the crater radius and depth are 0.67 m and 0.96 m, respectively. The numerical results indicate that both of average fragment size and fragment size distribution range significantly increase with the increase of in-situ stress, while they first decrease and then increase with the increase of short delay times. Moreover, there is a specific delay window ranging from 0.5 to 3 ms where short-delay blasting improves fragmentation performance, and the optimum delay time increases with the increase of in-situ stress. The findings of this study can aid in improving the efficiency and safety of blasting operations in deep hard rock mining.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.