Abstract

Flow-like landslides are rapidly moving fluid–solid mixtures that can cause significant destruction along paths that run far from their original sources. Existing models for run out prediction and motion simulation of flow-like landslides have many limitations. In this paper, we develop a new method named ‘Tsunami Squares’ to simulate the generation, propagation and stoppage of flow-like landslides based on conservation of volume and momentum. Landslide materials in the new method form divisible squares that are displaced, then further fractured. The squares move under the influence of gravity-driven acceleration and suffer decelerations due to basal and dynamic frictions. Distinctively, this method takes into account solid and fluid mechanics, particle interactions and flow regime transitions. We apply this approach to simulate the 1982 El Picacho landslide in San Salvador, capital city of El Salvador. Landslide products from Tsunami Squares such as run out distance, velocities, erosion and deposition depths and impacted area agree well with field investigated and eyewitness data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call