Abstract
<p>Numerical simulations for the transport of coarse sediment particles in turbulent flows are performed, with particular emphasis on the energy and momentum exchange [1, 2, 3] between the two phases at the particle scale.  The solid particles positions and velocities are solved through the Discrete Element Method (DEM), coupled with a Computational Fluid Dynamics (CFD) model which updates the dynamically evolving flow field through the numerical solution of the Reynolds Averaged of Navier-Stokes equations (RANS).</p><p>At the core of this work, the coupling of these two models (DEM-CFD) based on the Fictitious Boundary Method, is analysed. The models have a high mesh resolution, by adopting a meshing strategy which aims at sufficiently discretising the flow field surrounding each particle. Smooth and rough bed cases are simulated, under a wide range of Reynolds numbers covering applications from particle entrainment, up to bulk bedload transport through rolling and saltation. The numerical results are benchmarked against experimental data obtained from controlled laboratory experiments [4, 5, 6].</p><p>The implementation of coupled CFD-DEM models provides a very powerful tool for improving the understanding of fluid and particle physics in sediment transport. Particularly, the potential to perform a large number of validated numerical that robustly predict geomorphological changes in aquatic environments and fluvial systems.</p><p><strong>References</strong></p><p>[1] Valyrakis M., P. Diplas, C.L. Dancey, and A.O. Celik. 2008. Investigation of evolution of gravel river bed microforms using a simplified Discrete Particle Model, International Conference on Fluvial Hydraulics River Flow 2008, Ismir, Turkey, 03-05 September 2008, 10p.</p><p>[2] Valyrakis M., Diplas P. and Dancey C.L. 2013. Entrainment of coarse particles in turbulent flows: An energy approach. J. Geophys. Res. Earth Surf., Vol. 118, No. 1., pp 42- 53, doi:340210.1029/2012JF002354.</p><p>[3] Pähtz, Th., Clark, A., Duran, O., Valyrakis, M. 2019. The physics of sediment transport initiation, cessation and entrainment across aeolian and fluvial environments, Reviews of Gephysics, https://doi.org/10.1029/2019RG000679.</p><p>[4] Valyrakis, M. & Pavlovskis, E. 2014. "Smart pebble” design for environmental monitoring applications, In Proceedings of the 11th International Conference on Hydroinformatics, Hamburg, Germany.</p><p>[5] Valyrakis M., A. Alexakis. 2016. Development of a “smart-pebble” for tracking sediment transport. International Conference on Fluvial Hydraulics River Flow 2016, St. Liouis, MO, 8p.</p><p>[6] Valyrakis, M., Farhadi, H. 2017. Investigating coarse sediment particles transport using PTV and “smart-pebbles” instrumented with inertial sensors, EGU General Assembly 2017, Vienna, Austria, 23-28 April 2017, id. 9980.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.