Abstract
Ocean ridge discontinuities partition and offset spreading centres at a range of scales. Large scale discontinuities (10's–100's km) are synonymous with first-order transform faults, which have well defined linear fault zone valleys. In contrast, Non-Transform Discontinuities (NTDs) are diffuse, smaller scale offsets (0 to < 20 km), characterised by central basins or topographic highs. The geometry of NTD offsets can be categorised by the sense of offset, either right-stepping or left-stepping, and by the relative positions of the segment tips. The segment tip configurations include under-lapping, over-lapping or simple across-axis jumps or stepping in the ridge axis. In this study finite difference software is used to model segment geometry at a slow-spreading ridge under a normal tensile-stress within a homogeneous and isotropic medium. Along- and across-axis segment separations were varied incrementally for left- and right-stepping senses. The results show that the ratio of along-axis to across-axis segment tip separation is a dominant control of stress field rotation within an NTD. Features which most clearly show rotation within an NTD include basins and tectonically controlled constructional ridges. The obliquity of these features along with measurements of the surrounding fault fabrics are used as a way of observing and determining stress rotations within NTDs along the Central Indian Ridge (CIR). These rotations were used to obtain segment geometries from models where the central tensor showed an equivalent rotation. The results show that geometry has a profound effect on stress field rotation under which large- and small-scale volcano-tectonic fabrics form. In addition, a shortfall of the predicted model tip relative to interpreted positions, along with morphology and observation of the ridge fabrics at the terminations to some segments, suggests the existence of a zone, broadly analogous to the process zone observed in fracture mechanics, which we call a damage zone. Given the criteria for the promotion of hydrothermal circulation, this damage zone would have a greater potential for hosting hydrothermal activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.