Abstract
The electronics is protected using plastic or metallic enclosures. Although, the electronics is protected by the enclosures from the surrounding environment, the moisture can still enter the enclosure via gasket, plastic enclosure walls, cable feedthroughs. The moisture existing inside enclosure may condense on PCBA or components due to a temperature changes or different temperature levels and can lead to a moisture-related failures. The temperature in the enclosure is also very dependent on the location and the heating of electronic components. Furthermore, the electronics can be mounted nearby to other heating or cooling components in the complex mechanical systems, such as water pump or water meter. The paper concerns the complex transient heat and mass transfer processes between two connected enclosures with one being warm and another cold. The objective of the paper is to develop an in-house code based on the RC approach for predicting and studying the temperature and moisture behaviour inside two connected enclosures. The developed RC model combines one-dimensional description and lumped analysis for heat and mass transport. The modelling of temperature and moisture response is carried out under non-isothermal B3 STANAG ambient conditions. Moreover, the effect of different material of warm enclosure and the heating are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.