Abstract

Chalk’s sensitive, variable nature poses difficulties for foundation designers. It can present as weak rock and yet be de-structured to very weak putty by dynamic or high-pressure loading. The development of multiple offshore wind farms at north European chalk sites led to the recent ALPACA Joint Industry Programme, which undertook intensive material characterisation and large-scale field testing at St Nicholas at Wade (SNW), Kent, UK to capture and better understand the behaviour of piles driven in fractured low-to-medium density chalk. Noting that lateral loading response is a vital design concern for monopile and jacket supported structures, this paper focuses on 3D Finite Element (FE) modelling of ALPACA’s monotonic lateral loading field tests on open-ended driven tubular steel piles. The brittle chalk is modelled with a strain-softening Mohr-Coulomb model combined with nonlocal regularisation, calibrated meticulously against the ALPACA characterisation dataset. A second, simpler modelling approach, adopting a perfectly-plastic Mohr-Coulomb model, is also explored as a simplified practical alternative. Both approaches can match field lateral capacity and bending moment distributions, after taking due account of pile installation and chalk fracturing effects. The analyses indicate how robust, accurate and cost-effective lateral loading design may be approached for low-to-medium density fractured chalks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call