Abstract

This paper describes the development of a simulation model for ball end milling with inclination angle based on a finite element method. The Johnson–Cook model and isotropic hardening rule were used to describe the properties of the workpiece material, and re-meshing technology was adopted to obtain accurate results. The Cockcroft–Latham criteria rule was used to determine the chip formation. The ball end mill was modelled, and then imported into a finite element analysis system for simulation of machining process. The heat conducted into the cutter was taken into account in the present simulation, giving a better accordance with the actual machining process. Thirty combinations of cutting parameters and inclination angle of the ball end milling process were simulated in the finite element environment, and the corresponding ball end milling experiments were conducted in a five-axis machine. Evolution of the chip and the effective stress predicted in the shear zone during simulation were presented. The cutting forces derived from the simulation were compared with the experimental results, and the overall trend of the maximum cutting forces in each direction showed a good agreement with the experimentally measured values. The potential possibility to study five-axis ball end milling with both inclination angle in feed and cross-feed direction was pointed out.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.