Abstract

A hyperelastic constitutive model is implemented to study the formability on three-dimensional complex shapes of a single layer E-glass non-crimp 3D orthogonal woven reinforcement. Experimental measurements of the main deformation modes have been used to identify the strain energy density function of the constitutive model. The comparison of the finite element simulations and experimental results of tetrahedron and double-dome shaping processes demonstrated the adequacy of the adopted hyperelastic model to describe the deformation mechanisms involved during draping and the efficiency to predict the global behaviour of the non-crimp 3D woven reinforcement during complex shape forming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.