Abstract

This paper presents a numerical prediction of a new 3D film cooling hole geometry, the converging slot-hole or console. The console geometry is designed in order to improve the heat transfer and aerodynamic loss performance of turbine vane and rotor blade cooling systems without loosing the mechanical strength of a row of discrete holes. The cross section of the console changes from a circular shape at the inlet to a slot at the exit. Previous successful application of a new anisotropic DNS based two-layer turbulence model to cylindrical and shaped hole injections is extended to predict film cooling for the new console geometry. The suitability of the proposed turbulence model for film cooling flow is validated by comparing the computed and the measured wall-temperature distributions of cylindrical hole injections. The result shows that the anisotropic eddy-viscosity/diffusivity model can correctly predict the spanwise spreading of the temperature field and reduce the strength of the secondary vortices. Comparative computations of the adiabatic film cooling effectiveness associated with the three geometries tested in the present study (cylindrical, shaped, and console) show that the new console film-cooling hole geometry is definitely superior to the other geometries as shown by the uniform lateral spreading of the effectiveness with a slight enhancement downstream of the intersection of the two consoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.