Abstract

The mechanics of thrombus formation includes the interaction of platelets, fibrin, and erythrocytes. The interaction was analyzed as the erythrocyte approaches the activated platelet and fibrin thrombus formation. The discrete element method (DEM) was used for the numerical experiment. Details of numerical experiments are presented by analyzing the dynamics of an erythrocyte in the process of interaction; a history of force, velocity, and displacement is given. It is usually assumed that the objects modeled by the DEM can oscillate during the sticking process. Modeling only this requires specialized knowledge and long-term research. However, by taking into account the influence of the fluid and modeling a soft biological cell, a completely different behavior can be achieved using the DEM method. The results of the numerical experiment show the different behavior of the erythrocyte when it interacts with a certain surface. Without taking into account the influence of the fluid in the sticking process, oscillations of the erythrocyte are observed. Meanwhile, after evaluating the influence of the liquid on the sticking process, there are no oscillations and unloading processes, which are typical for ultrafine objects. It is hoped that this will contribute to the study of the complex process of thrombus formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.