Abstract

The objective of this contribution is to analyse the formation of debris waves in natural channels. Numerical simulations are carried out with a 1D code based on shallow-water equations and on the weighted averaged flux method. The numerical code represents the incised channel geometry with a power-law relation between local width and flow depth and accounts for all source terms in the momentum equation. The debris mixture is treated as a homogeneous fluid over a fixed bottom, whose rheological behaviour alternatively follows Herschel-Bulkley, Bingham or generalised visco-plastic models. The code is applied to real debris flow events that consisted of a single wave and multiple surges, in particular in the Illgraben catchment (Switzerland) and in the Cortina d'Ampezzo area (Dolomites). Numerical results are presented and compared with available flow depth registrations. A statistical analysis of debris waves shows that a good representation of wave statistics can be obtained with a proper calibration of r...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.