Abstract

In this paper crack initiation, propagation and branching phenomena are simulated using the Pseudo-Spring Smoothed Particle Hydrodynamics (SPH) in two and three-dimensional domains. The pseudo-spring analogy is used to model material damage. Here, the interaction of particles is limited to its initial immediate neighbours. The particles are connected via springs. These springs do not provide any extra stiffness in the system but only define the level of interaction between the connecting pairs. It is assumed that a crack has passed through a spring connecting a particle pair if the damage indicator of that spring becomes more than a predefined value. The crack branching of a pre-notched plate under dynamic loading and the effect of loading amplitude are studied. The computed crack speeds, crack paths and surfaces are compared with experimental and numerical results available in the literature and are found to be in good agreement. Next, the effect of notch location for a plate with a circular hole is studied. The ability of the framework to model arbitrary crack paths and surfaces are also demonstrated via three-dimensional simulations of chalk under torsion, Kalthoff-Winkler experiment, Taylor bullet impact and crack branching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.